Step of Proof: before-hd
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
before-hd
:
1.
T
: Type
2.
L
:
T
List
3. 0 < ||
L
||
4. no_repeats(
T
;
L
)
5.
x
:
T
6.
x
before hd(
L
)
L
7.
x
,
y
:
T
.
x
before
y
L
(
(
x
=
y
))
8.
(
x
= hd(
L
))
9. hd(
L
) before
x
L
False
latex
by
InteriorProof
((FLemma `l_before_transitivity` [6;9])
CollapseTHEN (MaAuto
))
latex
C
1
:
C1:
10.
x
before
x
L
C1:
False
C
.
Definitions
t
T
,
,
#$n
,
||
as
||
,
i
j
,
s
=
t
,
Void
,
x
before
y
l
,
L1
L2
,
hd(
l
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
no_repeats(
T
;
l
)
,
A
,
x
:
A
.
B
(
x
)
,
P
Q
,
x
:
A
B
(
x
)
,
a
<
b
,
type
List
,
False
,
Type
Lemmas
l
before
transitivity
origin